Interaction between Mitochondrial Reactive Oxygen Species, Heme Oxygenase, and Nitric Oxide Synthase Stimulates Phagocytosis in Macrophages

نویسندگان

  • Andrea Müllebner
  • Gabriel G. Dorighello
  • Andrey V. Kozlov
  • J. Catharina Duvigneau
چکیده

Background Macrophages are cells of the innate immune system that populate every organ. They are required not only for defense against invading pathogens and tissue repair but also for maintenance of tissue homeostasis and iron homeostasis. Aim The aim of this study is to understand whether heme oxygenase (HO) and nitric oxide synthase (NOS) contribute to the regulation of nicotinamide adenine dinucleotide phosphate oxidase (NOX) activity and phagocytosis, two key components of macrophage function. Methods This study was carried out using resting J774A.1 macrophages treated with hemin or vehicle. Activity of NOS, HO, or NOX was inhibited using specific inhibitors. Reactive oxygen species (ROS) formation was determined by Amplex® red assay, and phagocytosis was measured using fluorescein isothiocyanate-labeled bacteria. In addition, we analyzed the fate of the intracellular heme by using electron spin resonance. Results We show that both enzymes NOS and HO are essential for phagocytic activity of macrophages. NOS does not directly affect phagocytosis, but stimulates NOX activity via nitric oxide-triggered ROS production of mitochondria. Treatment of macrophages with hemin results in intracellular accumulation of ferrous heme and an inhibition of phagocytosis. In contrast to NOS, HO products, including carbon monoxide, neither clearly affect NOX activity nor clearly affect phagocytosis, but phagocytosis is accelerated by HO-mediated degradation of heme. Conclusion Both enzymes contribute to the bactericidal activity of macrophages independently, by controlling different pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pathological Impact of the Interaction of NO and CO with Mitochondria in Critical Care Diseases

The outcome of patients with critical care diseases (CCD) such as sepsis, hemorrhagic shock, or trauma is often associated with mitochondrial dysfunction. In turn, mitochondrial dysfunction is frequently induced upon interaction with nitric oxide (NO) and carbon monoxide (CO), two gaseous messengers formed in the body by NO synthase (NOS) and heme oxygenase (HO), respectively. Both, NOS and HO ...

متن کامل

Antioxidant and Anti-Inflammatory Effects of Herbal Formula SC-E3 in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages

SC-E3 is a novel herbal formula composed of five oriental medicinal herbs that are used to treat a wide range of inflammatory diseases in Korean traditional medicine. In this study, we sought to determine the effects of SC-E3 on free radical generation and inflammatory response in lipopolysaccharide- (LPS-) treated RAW 264.7 macrophages and the molecular mechanism involved. The ethanol extract ...

متن کامل

The Role of Thiamine in Wilson’s Disease: Possible Genetic and Cellular Signaling Mechanisms

The relationship between supplemental thiamine and Wilson’s disease has been the focus of recent investigation; and supplemental thiamine has been reported to modulate Wilson’s disease. Genetic studies have helped identify a number of factors that link thiamine to Wilson’s disease, including transcription factor p53, Bcl-2, caspase-2, heme oxygenase-1, and apolipo protein E. Thiamine has also b...

متن کامل

Nitric oxide regulation of mitochondrial oxygen consumption I: cellular physiology.

Mitochondrial biochemistry is complex, expanding from oxygen consumption, oxidative phosphorylation, lipid catabolism, heme biosynthesis, to apoptosis, calcium homeostasis, and production of reactive oxygen species, including nitric oxide (NO). The latter molecule is produced by a mitochondrial NO synthase (mtNOS). The rates of consumption and production determine the steady-state concentration...

متن کامل

Hemopexin therapy improves cardiovascular function by preventing heme-induced endothelial toxicity in mouse models of hemolytic diseases.

BACKGROUND Hemolytic diseases are characterized by enhanced intravascular hemolysis resulting in heme-catalyzed reactive oxygen species generation, which leads to endothelial dysfunction and oxidative damage. Hemopexin (Hx) is a plasma heme scavenger able to prevent endothelial damage and tissue congestion in a model of heme overload. Here, we tested whether Hx could be used as a therapeutic to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2017